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Abstract: In the large Nc limit of QCD, baryons can be modeled as solitons, for in-

stance, as Skyrmions. This modeling has been justified by Witten’s demonstration that

all properties of baryons and mesons scale with N
−1/2
c in the same way as the analogous

meson-based soliton model scales with a generic meson-meson coupling constant g. An al-

ternative large Nc limit (the orientifold large Nc limit) has recently been proposed in which

quarks transform in the two-index antisymmetric representation of SU(Nc). By carrying

out the analog of Witten’s analysis for the new orientifold large Nc limit, we show that

baryons and solitons can also be identified in the orientifold large Nc limit. However, in

the orientifold large Nc limit, the interaction amplitudes and matrix elements scale with

N−1
c in the same way as soliton models scale with the generic meson coupling constant g

rather than as N
−1/2
c as in the traditional large Nc limit.

Keywords: QCD, 1/N Expansion, Solitons Monopoles and Instantons.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep122006035/jhep122006035.pdf

mailto:alekseyc@physics.umd.edu
mailto:cohen@physics.umd.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
6
)
0
3
5

Contents

1. Introduction 1

2. Mesons 5

3. One-gluon exchange 7

4. Baryons 9

4.1 Baryon mass 9

4.2 Scattering 12

5. Conclusions 15

1. Introduction

In 1973 ’t Hooft proposed a large Nc limit for QCD [1] that has proved to be a powerful

tool in studying QCD and other strongly coupled gauge theories. ’t Hooft’s idea was to

generalize the gauge group of QCD from SU(3) to SU(Nc), and take Nc → ∞ while

keeping g2Nc and the number of flavors Nf fixed. In this limit quark loops are suppressed,

and non-planar diagrams are suppressed by a factor of N−2
c for each handle. This greatly

reduces the number of diagrams one must consider and allows one to make many qualitative

predictions. For instance, quark-loop suppression implies the OZI rule, and baryons can

be treated as solitons in the large Nc limit [2 – 4]. While this helps explain an important

qualitative feature of hadronic physics, it does pose a phenomenological difficulty in relating

the large Nc limit to the physical world of Nc = 3. To wit, there are the important cases

in which the OZI rule is badly violated, and they are not explained in the large Nc limit.

These cases include the situations in which the U(1)A anomaly plays a critical role, such

as in the η′ − π mass difference.

A new large Nc limit for QCD that was proposed by Armoni, Shifman, and Veneziano

[6 – 9] has received considerable recent attention. This limit, which they have dubbed the

‘orientifold large Nc limit’, starts from the observation that at Nc = 3 a quark can be

described in two equivalent ways. It can be described as a Dirac spinor field transforming

according to the fundamental representation of color SU(3) or, equivalently, as a Dirac

spinor field transforming according to the two-index anti-symmetric representation of color

SU(3). One can take a large Nc limit starting from either one of these two possibilities.

Starting from the fundamental representation yields the ’t Hooft (or, if one wishes, “tradi-

tional”) large Nc limit (TLNC limit), while using the anti-symmetric representation yields

the new orientifold (or “other”) large Nc limit (OLNC limit).
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The OLNC limit has a number of attractive features from a theoretical perspective. It

is inspired by and related to supersymmetric Yang-Mills theory, and for one flavor allows

one to apply some of the powerful analytic tools and results of supersymmetric Yang-Mills

theory to QCD. However, it is important to note that the OLNC has important differences

from the TLNC. While non-planar diagrams are suppressed in the OLNC limit (similarly

to the TLNC limit), quark loops are not suppressed in the OLNC limit, since they, like

gluons, carry two color indices. This alters the nature of the large Nc scaling in the theory.

Most significantly it implies that an n-meson vertex scales with Nc differently in the two

expansions:

Γn ∼ N2−n
c (OLNC)

Γn ∼ N1−n/2
c (TLNC) . (1.1)

These scaling relations show that in the OLNC limit, mesons behave analogously to glue-

balls in the TLNC limit[12]. This is as one would expect, since in the OLNC limit both

quarks and gluons carry two color indices.

Apart from the above difference in the scaling of meson interactions, there is another

important distinction between the OLNC and the TLNC limit. Since quark loops are not

suppressed in the OLNC limit, unlike the TLNC limit it does not impose the OZI rule.

This has the disadvantage of not explaining a generic feature of hadronic phenomenology

(that the TLNC limit explains quite neatly). However, it has the compensating virtue of

not requiring large 1/Nc corrections in those situations where quark loops are important,

such as in the η′ − π mass difference.

Witten [2, 4] showed that it is natural to make an identification between baryons

and solitons, such as the Skyrmion, in the TLNC limit. The evidence for this was based

on explicit calculations of the scaling of the baryon and meson masses and scattering

amplitudes with Nc. It was seen that all properties of baryons and mesons scale with

N
−1/2
c in the same way as an analogous meson-based soliton model scales with a generic

meson-meson coupling constant g. It is important to determine whether this baryon-soliton

identification can be made in the new OLNC limit.

At first sight it appears that the identification does not work: the mass of baryons is

usually thought to scale as N1
c , while as pointed out by Armoni and Shifman[5], the mass

of Skyrmions in the OLNC limit scales as N2
c , creating an apparent contradiction. It is not

hard to see that the Skyrmion mass scales as N2
c . For illustration consider the simplest

Skyrmion for two massless flavors. The Lagrangian density is given by

LS =
f2

π

4
Tr(LµLµ) +

ε2

4
Tr([Lµ, Lν ]

2) , (1.2)

where the left chiral current Lµ is given by Lµ ≡ U †∂µU , with U ∈ SU(2)f [11, 13]. The

U field can be written as U = exp (i~τ · ~π/fπ), where ~π is the pion field. Upon expanding

the pion field in the Lagrangian one sees that the n-meson vertices agree with the generic
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scaling rules of Eq. (1.1) only if

ε ∼ N1/2
c fπ ∼ N1/2

c (TLNC)

ε ∼ N1
c fπ ∼ N1

c . (OLNC) (1.3)

The mass of the Skyrmion depends only on the parameters fπ and ε; the standard varia-

tional treatment [13] yields a soliton mass given by Ms = mεfπ where m is a dimensionless

number obtained from the solution of the variational equation. From the scaling behavior

of fπ and ε in Eq. (1.3), one sees that the soliton mass scales as Ms ∼ N2
c . Moreover, it is

quite easy to see that the scaling of the soliton mass with N2
c is generic; it does not depend

on the details of the particular Skyrmion Lagrangian used.

However, Bolognesi [10] has shown that the discrepancy between a soliton mass scaling

as N2
c and a baryon mass scaling as N1

c is due to a naive (and incorrect) expectation about

the scaling of the baryon mass. In fact, Bolognesi showed that a color singlet baryon state

in the OLNC limit must contain at least Nc(Nc−1)/2 ∼ N2
c quarks [10]. This suggests that

baryon masses should scale as N2
c , not N1

c , which eliminates the apparent inconsistency.

Bolognesi’s observation that order N2
c quarks are required to make a baryon is clearly

of paramount importance in the identification of baryons as Skyrmions in the OLNC limit.

Moreover, ref. [10] notes that the coefficient of the Wess-Zumino-Witten term must be

Nc(Nc−1)/2, as one would expect in order for the identification to be consistent. However,

by itself this is not sufficient. Recall that Witten’s identification of baryons as solitons in

the TLNC limit required far more than the simple observation that a baryon had at least

N1
c quarks. Rather it was based on the observations that

1. The total contribution to the mass of the baryon—including the energy of interaction

between the quarks via (multiple) gluon exchange—is of order N1
c ;

2. The characteristic Nc scaling of all other observables of baryons and mesons (such

as scattering amplitudes or form factors) is analogous to the scaling of the same

quantities in soliton models, provided one scales g, the characteristic coupling in the

soliton model, as N
−1/2
c .

In fact, these conditions were not demonstrated rigorously in ref. [2]. Rather, it was shown

that 1) various typical classes of gluon exchange diagrams contributing to the mass scaled as

Nc (counting the combinatoric factors) and 2) characteristic classes of diagrams associated

with the various observables scaled appropriately once combinatoric factors were included.

The question addressed in this paper is whether hadronic properties in the OLNC limit

have the same Nc scaling as the properties of solitons, with the characteristic coupling

constant g in the soliton model scaling as g ∼ N−1
c . Such a scaling rule is consistent both

with the baryon scaling as N2
c , and with the meson-meson scattering amplitudes given

in Eq. (1.1). It is not clear how to demonstrate this in a completely rigorous manner.

However, a demonstration with a degree of rigor comparable to Witten’s original analysis

for the TLNC limit will presumably suffice to make a compelling case. The goal of this

paper is to provide such a demonstration via the consideration of classes of diagrams in
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a manner analogous to ref. [2]. This would essentially complete the program begun in

ref. [10] of establishing a Skyrmionic description of baryons in the OLNC limit.

If one follows the arguments in this paper, it will be obvious that all of the qualitative

conclusions for scaling rules with Nc apply equally to the case in which the quarks are taken

to be in the two-index symmetric representation. However, we focus on the anti-symmetric

case since it corresponds to the physical world at Nc = 3; the symmetric case does not.

The generalization of Witten’s analysis to baryons in the OLNC limit is not completely

trivial; there is an important subtlety for baryons in the OLNC limit which is not present in

the TLNC limit. The nature of the issue can be seen by looking at the one-gluon exchange

contribution to the baryon energy. For the TLNC limit, Witten showed these contributions

scale as N1
c (ref. [2]). In a representative diagram of two quarks interacting via a single

gluon exchange, there are two gluon vertices which together contribute a factor of 1/Nc,

and a combinatoric factor of N2
c since each end of the gluon can connect to one of the Nc

distinct quarks in the baryon.

A naive generalization of this reasoning to the OLNC limit suggests that there the

one-gluon exchange contribution to the mass scales like N3
c . There is again a 1/Nc factor

for the gluon vertices, but in the OLNC limit case there are Nc(Nc − 1)/2 ∼ N2
c species of

quark and thus the combinatoric factor appears to scale as N4
c . If the contribution of the

one-gluon exchange contribution to the nucleon mass really does scale as N3
c , it suggests

that the baryon mass grows with Nc faster than N2
c , apparently preventing an identification

of baryons with the Skyrmions in the OLNC limit.

In this paper, we demonstrate that despite the apparent discrepancy above, the one-

gluon exchange contribution to the baryon mass scales only as N2
c . As will be seen, there

is an important difference in the nature of one-gluon exchange in the two limits which

ultimately resolves the apparent paradox involving the one-gluon exchange contribution to

the baryon mass discussed above. Moreover, we show more generally that the contribution

to the mass from all types of multiple gluon exchange diagrams scales as N2
c . This is what

is required to have the baryon mass scale as N2
c , and thus to obtain precisely the behavior

needed for the baryon to scale as a Skyrmion in the OLNC limit.

Similarly, we study characteristic diagrams contributing to numerous quantities associ-

ated with hadronic interaction and from these diagrams abstract the Nc scaling behavior. In

particular, we consider the strength of the meson-baryon coupling (N1
c ), the baryon-meson

scattering amplitude (N0
c ), baryon-meson scattering to a two-meson final state (N−1

c ), and

the baryon-baryon coupling (N2
c ). These are precisely the scaling rules one would expect

if the baryon were a Skyrmion.

Given these scaling results, we argue that one can view baryons as Skyrmions in the

OLNC limit as well as in the TLNC limit. The fundamental difference between the two

cases is that any quantity which scales as Nk
c in the TLNC limit scales as N2k

c in the OLNC

limit.

In the analysis that follows we will sometimes draw representative Feynman diagrams.

Occasionally, where it is important to illustrate the color flow, we follow ’t Hooft and use

color-flow diagrams in which we draw gluons as two oppositely directed color lines. In

the TLNC limit, quarks are represented by single fermion lines, while in the OLNC limit
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quarks are represented by doubled fermion lines pointing in the same direction, in order to

reflect the fact that quarks now carry two color indices. The double-line representation for

quarks in the OLNC limit will be used in both Feynman diagrams and color-flow diagrams.

The central focus of this paper is on baryons. However, the identification of baryons

as solitons in a mesonic theory requires an understanding of the scaling rules in the meson

sector encapsulated in Eq. (1.1). Moreover, the elucidation of some aspects of the mesonic

sector is essential for clarifying the meson-baryon interaction. Accordingly, the next section

will sketch the derivation of the scaling rules for the meson sector. Since these results are

well known there is no need to be complete; we only attempt to provide enough detail

to elucidate the main points. Next, we devote a short section to the discussion of a vital

difference in the color-flow in one-gluon exchanges between two quarks in the TLNC and

OLNC limits. This distinction will help resolve the apparent paradox involving baryon

mass scaling that was discussed above. Following that section, we turn to the main focus

of the paper: the scaling properties of baryons. We consider classes of diagrams which

enable us to deduce the scaling of the baryon mass and various aspects of interactions of

baryons with other hadrons. Finally, there is a brief concluding section.

2. Mesons

In this section we briefly review the large Nc scaling of meson interaction amplitudes in the

TLNC and OLNC limits. While the results are well known, they are useful in what follows.

Throughout the section, we first review how the analysis works for a given quantity in the

TLNC limit, and then discuss the analogous derivation in the OLNC limit. To streamline

the discussion, we examine simple quark loops as representatives of the leading order class

of diagrams for each quantity we examine. This can be done without loss of generality as

the inclusion of more complicated planar graphs clearly does not alter the result.

In both of the TLNC and OLNC limits, meson masses have the same scaling as quark

masses, i.e., they scale as N0
c . Our first step is to determine the Nc scaling of the matrix

element for a current to create a meson.

We begin with the TLNC limit. Consider a quark loop with two currents carrying

meson quantum numbers at the edges as a representative diagram for the two-point corre-

lation function (figure 1(a) — the solid dots represent the currents). There are N1
c choices

of color for the quark loop, so the diagram must scale as N1
c as a whole. Matching the Nc

scaling of the diagrams with the meson picture, one sees that the amplitude for the current

to create a meson must scale as N
1/2
c .

The analysis proceeds in an analogous manner for the OLNC limit; the only significant

difference is that there are N2
c choices for the color loop in figure 1(b), and as a result each

meson creation matrix amplitude scales as N1
c rather than N

1/2
c . At this point, we should

note that up to constants of proportionality, fπ is the amplitude for the axial current

operator to create a pion from the vacuum. The preceding analysis shows that fπ ∼ N
1/2
c

for the TLNC limit while fπ ∼ N1
c for the OLNC limit. This is precisely what is needed

for consistency with the Skyrme Lagrangian as seen in Eq. (1.3).
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(a) TLNC limit (b) OLNC limit

Figure 1: Quark loops with two current insertions (as representatives of the class of leading
order diagrams for the two-point function) and their associated hadronic content in terms of meson
propagation.

(a) TLNC limit (b) OLNC limit

Figure 2: Meson decay diagrams. The relationships between quark loops (as typical members of
the class of leading order diagrams) with three current insertions and the hadronic-level effective
diagrams are illustrated.

Now consider the Nc scaling of the amplitude for the three-meson vertex which fixes the

strength of a meson decaying into two mesons. In the TLNC limit (figure 2(a)), we again

start with a quark loop, but this time with three current insertions, as a representative

of the class of leading order diagrams for the three-point correlation function. At the

hadronic level this diagram represents the creation of three mesons from the currents, with

the mesons interacting via a trilinear meson-meson-meson vertex. The diagram as a whole

still scales as N1
c , but we know that each of the matrix elements scale as N

1/2
c . This means

that the trilinear meson-meson-meson vertex must scale as N
−1/2
c . From this we conclude

that the amplitude for meson decays scales as N
−1/2
c , while the width scales as N−1

c , and

thus mesons are stable at large Nc in the TLNC limit.

In the OLNC limit, the main difference is again the N2
c choices of color labels for the

quark loop (figure 2(b)). It is not hard to see that this implies that the three meson vertex

must scale as N−1
c and its width therefore scales as N−2

c ; mesons are also stable in the

OLNC limit. Note that the scaling relation for the three-meson vertex is consistent with

Eq. (1.1).

It should be immediately clear from the preceding example how to generalize to the

case of an interaction vertex for any number of mesons. Adding one more meson reduces

the scaling by a factor of N
−1/2
c for the TLNC limit and by a factor of N−1

c for the OLNC

limit. Taken together these immediately yield Eq. (1.1).

Note that the generic replacement rule for scaling that was given in the introduction,

Nk
c (TLNC) → N2k

c (OLNC), holds throughout the meson sector.
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a b

b a

(a) Quarks in the funda-
mental representation

b

a b

a

(b) Color flow for quarks
in fundamental represen-
tation

Figure 3: One-gluon exchange between quarks in the fundamental representation. The colors a
and b are switched by the exchange

c
d

a
b

b
d

a
c

(a) Quarks in anti-
symmetric representa-
tion

b
a

c
d

a
c

b
d

(b) Generic color flow for
quarks in anti-symmetric
representation

b
a

b
c

a
b

b
c

(c) Color flow for gluon
exchange with no change
in color labels

Figure 4: One-gluon exchange between quarks in the anti-symmetric representation. The colors
for the initial quarks ab and cd are generally, but not necessarily, distinct from the colors for the
final quarks, ac and bd.

3. One-gluon exchange

As noted in the introduction, in order for there to be a possibility of identifying baryons with

solitons in the OLNC limit, there must be a subtle distinction between the behavior in the

TLNC limit and OLNC limit. The naive analysis of the one-gluon exchange contribution

to the baryon mass gives a result consistent with the Skyrmion for the TLNC limit and a

result apparently inconsistent for the OLNC limit. The origin of this discrepancy can be

traced to the nature of gluon exchange between quarks in the two cases. In this section

we focus on elucidating the differences in one-gluon exchange between two quarks in the

TLNC and OLNC limits.

Consider one-gluon exchange between two quarks in the TLNC limit (figure 3(a)),

where the quarks are taken to be in the fundamental representation and thus are labeled

by a single color. The key point is that the effect of the gluon exchange on the quark content

is simply to switch around the color labels of the two quarks (a and b in the figure), i.e.,

after the exchange one has quarks with the same colors as before the exchange. The reason

for this is clear from the color flow diagram of figure 3(b).

In contrast, consider a one-gluon exchange for two quarks in the anti-symmetric rep-

resentation relevant for the OLNC limit (figure 4(a)), where each quark is labeled by two

color indices. Note that while the total color of the state is preserved by the interaction

(one has fundamental colors a, b, c and d both in the initial and final state), the color labels

of the individual quarks are generally altered. In the case illustrated in figure 4(a), initially
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a
b

c
d

c
d

a
b

(a) Two-gluon ex-
change

c
d

a
b

b
a

d
c

(b) Color flow for
two-gluon exchange

Figure 5: Two-gluon exchange graphs for quarks in the anti-symmetric representation. The quarks
can have generic initial color labels and suffer no change in final quark color labels

one has quarks of the ab and cd varieties, but after the interaction there is one quark with

ac and one with bd. The reason for this is clear from the color flow diagram in figure 4(b).

Thus, unlike the situation with quarks taken to be in the fundamental representation, as

in the TLNC limit, gluon exchanges typically alter the color labels of quarks taken to be

in the anti-symmetric representation, as in the OLNC limit.

This fact plays a critical role in combinatoric counting at large Nc. If we restrict

ourselves to situations in which the colors of the initial and final quarks must be the same

(up to a permutation), then a one-gluon exchange in the OLNC limit requires a constraint

on the type of quarks which participate. In particular, they have to share one of their

two color indices. For example, in the diagram in figure 4(a), the restriction is for a = d

(recalling that the labels ba and ab are equivalent for an anti-symmetric representation).

This restriction will play a key role in reducing combinatoric factors when considering the

scaling of baryonic quantities.

Two quarks can also exchange a gluon (e.g., a bb̄, as in figure 4(c)) and undergo

no changes or permutations in color labels. In such situations, the gluons must be in the

Cartan subalgebra — that is, the diagonal subalgebra — of the algebra of SU(Nc) [16]. It is

non-trivial to show such gluons in an ’t Hooft style double-line diagram, but the imposition

of the tracelessness condition for the SU(Nc) algebra is a 1/Nc suppressed effect, and thus

one can simply work with gluons in the algebra of U(Nc) to leading order in 1/Nc[17] —

which is what we do in figure 4(c).

Of course it is possible for two quarks with no shared color labels to interact with no

change of color labels, but this generally requires a two-gluon exchange (figure 5(a)). It is

clear that in a certain sense, the case of two-gluon exchanges between two quarks in the

OLNC limit is analogous to one-gluon exchange in the TLNC limit. Again, the reason

this works is easily seen in the color-flow diagram of figure 5(b). This fact also plays an

important role in the scaling at large Nc, since the two-gluon exchange diagrams have an

extra factor of g2 ∼ N−1
c compared to one-gluon exchange.

The preceding illustrates the central distinction between the nature of gluon exchange

between quarks in the fundamental and anti-symmetric representations. It makes clear that

we cannot simply copy Witten’s combinatoric analysis developed for the TLNC limit for the

OLNC limit analysis. Instead, we must modify it suitably to account for the differences in

one-gluon exchanges in the two limits. Once this is taken into account, it is straightforward

– 8 –
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to show that the baryon quantities in the OLNC limit do in fact scale with Nc in a manner

consistent with a Skyrmion.

4. Baryons

4.1 Baryon mass

In the traditional ’t Hooft large Nc, limit baryons are antisymmetric, color-singlet com-

binations of Nc quarks (plus associated gluons and those quark-antiquark contributions

which arise through “z-graphs” without closed quark loops [15]). The quarks have a fixed

mass of order N0
c , yielding a contribution to the baryon mass that scales as N1

c ; similarly,

the kinetic energy of the quarks is a one-body operator and its contribution to the baryon

mass also scales as N1
c . Thus, it is is natural to assume that the baryon mass scales as N1

c .

For consistency, the contributions to the baryon mass from gluon exchange must also scale

like N1
c . It is not very difficult to verify that this is indeed the case.

Witten showed that in order to investigate gluon-exchange contributions to the baryon

mass, the relevant quantities to study are the quark-line connected diagrams (the discon-

nected ones arise through exponentiation of the Hamiltonian) [2]. Consider, as a simple

example, the one-gluon interaction between a pair of quarks in the baryon as illustrated in

figure 6(a). As discussed briefly above, this contribution scales as N1
c . Recall that any two

quarks in a baryon can interact in this way, since they simply exchange color indices in

the interaction, keeping the baryon a color singlet. The two quark-gluon vertices together

scale as (N
−1/2
c )2 = N−1

c . There are N1
c choices for the first quark involved and another

N1
c choices for the second one, giving a total combinatoric factor of N2

c . It follows that

such diagrams are of order N1
c .

Quark-line connected diagrams involving more than two quarks do not change this

conclusion because connecting an additional quark to the diagram requires adding two

new gluon vertices, for a factor of N−1
c , and a combinatoric factor of N1

c from the sum

over colors. As a result additional connected quarks only add factors of N0
c to such self-

interaction diagrams. This reasoning can easily be cast into the form of an argument by

induction, and a generalization of this idea will be used in the discussion of the OLNC

limit below.

Inserting additional gluons which connect to pre-existing gluons does not alter the

counting. By standard arguments an additional gluon will at most add a closed color loop

in the sense of ‘t Hooft diagrams thereby adding a power of Nc; this is compensated for by

two coupling constants at N−1
c yielding no change in the Nc counting (this is the analog

of the planar diagrams from the meson case). Depending on the topology of the diagram,

additional gluons may not add a color loop, in which case their graphs are suppressed in

the 1/Nc expansion (these are the non-planar graphs). Additional quark loops do not add

a color loop but cost a power of 1/Nc from the vertices and are thus always suppressed.

From these considerations, we see that in the TLNC limit the general gluon-exchange

contribution to the baryon mass really is of order N1
c . This is consistent with the baryon

mass scaling as N1
c .
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(a) TLNC limit (b) OLNC limit

Figure 6: Typical one-gluon exchange diagrams that contribute to the baryon mass. The letters
correspond to quark color labels before and after the gluon exchange.

In the OLNC limit the situation is somewhat more complicated. As shown by Bolognesi

[10], in this limit baryons are an antisymmetric combination of Nc(Nc −1)/2 ∼ N2
c quarks,

each of which now carries two color indices. Since each quark still has a mass and a

kinetic energy of order N0
c , this means that in this limit the baryon mass should scale

as N2
c . However, for this to be true, the contribution to the mass from gluon-exchange

interactions between the quarks must also scale as N2
c in the OLNC limit.

First, consider a representative diagram of a one-gluon interaction between two two-

index quarks in an OLNC limit baryon (figure 6(b)). As noted in the introduction, a naive

recapitulation of the reasoning used in the TLNC case leads to the conclusion that such

diagrams scale as N3
c : there are two gluon vertices, which together scale as N−1

c , and N2
c

choices for each of the two participating quarks, yielding a complete diagram that scales

as N−1
c N4

c = N3
c . This is clearly inconsistent with the baryon mass scaling like N2

c .

In fact, a more careful analysis shows that one-gluon interaction diagrams in the OLNC

limit scale as N2
c . The basic reason was foreshadowed in the preceding section: as in the

TLNC limit, the interacting quarks swap a color index through the interaction, but because

each quark now carries two color indices, there are restrictions on which quarks can interact

in this way within a baryon. For example, suppose the interacting quarks are labeled with

color indices ab and cd. After exchanging a bc̄ gluon, they become labeled with the indices

ac and bd (figure 7(a)). However, since the baryon is an antisymmetric combination of

all possible two-color labeled quarks, after such an interaction the baryon would ‘lose’ the

ac and bd quarks by antisymmetry, as well as the ab, cd quarks. Such a final state must

vanish. This forces us to conclude that quarks which do not share at least one color label

cannot interact directly via a one-gluon exchange in a baryon.

However, if two quarks do share a color label, then a direct interaction between them

will survive. For example, two quarks labeled ab and bc can interact via the exchange of

an ac̄ gluon, and will have color labels cb, ba after the interaction (figure 7(b)) — the color

labels are simply permuted. As desired, after the interaction the baryon still consists of an

antisymmetric combination of all possible two-color labeled quarks.

A one-gluon exchange within a baryon (see, e.g., figure 4(c)) that does not alter or

permute any color labels and is allowed by the antisymmetry condition is also possible[16].

As discussed in the preceding section, this involves gluons in the Cartan subalgebra of

SU(Nc). In such diagrams, the involved quarks must share some color labels, so their Nc
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Figure 7: Not every interaction between two quarks within a baryon is allowed in the OLNC limit.
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(b) Color flow for an
interaction between two
unlike quarks ab and cd

(c) A typical many-quark
interaction

Figure 8: Gluon-exchange interactions in a baryon between multiple quarks in the OLNC limit.

scaling is the same as those of the other diagrams involving one-gluon exchange.

From these considerations we see that only quarks that share a color label can interact

via a one-gluon exchange in a baryon in the OLNC limit. Consider now the Nc scaling of a

diagram of such an interaction (figure 6(b)) in the OLNC limit. There are two quark-gluon

vertices, for a factor of (N
−1/2
c )2 = N−1

c . There are N2
c choices for the first quark involved,

but only N1
c choices for the second because it must share a color label with the first quark,

giving a combinatoric factor of N3
c . Thus the entire diagram scales as N2

c .

We note that two quarks in a baryon that share no color indices can interact with

each other, but the interaction must involve more than one gluon exchange. If two quarks

exchange two gluons directly (as in figure 5(a)), the four gluon vertices will give a factor

of N−2
c , and the N2

c choices for the labels of each of the two quarks will result in a N2
c

scaling for the interaction. Alternatively, two quarks with unlike labels may interact via

gluon exchanges with an intermediary third quark, which must share some indices with

both of the unlike quarks, as in figure 8(a).

To show that gluon exchanges contribute at most N2
c to the baryon mass, we must

demonstrate that diagrams with an arbitrary number of interacting quarks within a baryon

scale as N2
c . To show this, we will construct an argument by induction that shows that

diagrams with q interacting quarks (figure 8(c)) scale as N2
c at large Nc. The argument

by induction is essentially based on the idea that one can build a diagram with (q + 1)
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interacting quarks by adding a quark to some q-quark diagram, and the observation that

such an addition does not change the Nc scaling of the diagram.

As the base case (that is, q = 2), we have already shown above that diagrams with

two interacting quarks scale as N2
c . Next, observe that any leading-order diagram with

q +1 interacting quarks can be constructed from some q-quark diagram by connecting (via

one or more gluons) an additional quark. As the inductive step, suppose that the q-quark

diagram scales as N2
c . We can connect a new (q +1)st quark to the diagram in one of three

ways: either by a one-gluon connection to a quark in the q-quark diagram, by a one-gluon

connection to a gluon in the q-quark diagram, or by a two-gluon connection to a quark in

the q-quark diagram.

The first two cases above are identical as far as the topology of color flow is concerned,

as an inspection of figure 8(b) makes clear. Therefore, we can consider only the cases of

direct quark-quark connections, without loss of generality. Since the new quark connects

via gluon exchange to a quark in the q-quark diagram, the situation is reduced to that of

the base case of two interacting quarks.

If only one gluon is exchanged (with a factor of N−1
c from the two new coupling con-

stants), the new quark must share a color index with the quark with which it is interacting,

yielding a combinatoric factor of N1
c . Alternatively, if two gluons are exchanged (with a

factor of N−2
c from the four new coupling constants), the new quark need not share any

color indices with the quark with which it is interacting, yielding a combinatoric factor of

N2
c . In either case, the scaling of the (q +1)-quark diagram is the product of the scaling of

the q-quark diagram, N2
c , and a factor of either N−1

c N1
c ∼ N0

c , or N−2
c N2

c ∼ N0
c . Thus we

see that a general (q + 1)-quark diagram scales as N2
c in the OLNC limit. This completes

the argument by induction, and we conclude that any diagram with q interacting quarks

scales as N2
c at leading order.

Of course, diagrams beyond the class considered above can contribute. For example,

additional gluons can connect between the gluons in flight yielding closed gluon loops.

However, such additional gluon loops will not alter the Nc counting. As in the case of the

TLNC limit, adding a gluon to a diagram can at most add a closed color loop in the sense

of an ’t Hooft diagram, adding a factor of Nc which is compensated by a N−1
c factor from

the additional vertices. This yields either an unchanged Nc scaling or a suppression.

Unlike the TLNC limit, closed quark loops are not suppressed in the OLNC limit. Due

to their two-index nature they behave analogously to gluons. Depending on the topology of

the diagram, quark loops can add at most one new color loop, which is exactly compensated

for by the N−1
c factor due to the new vertices. Thus, while quark loops are not suppressed,

they also do not alter the leading Nc counting.

As a result of these considerations, it is apparent that the total energy of interactions

between quarks due to the exchange of gluons is of order N2
c . Thus we see that the baryon

mass consistently scales as N2
c . This is consistent with the known scaling of the soliton

mass, which is also N2
c in the OLNC limit.

4.2 Scattering

Our goal in this subsection is to show that the scaling rules for scattering amplitudes and
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(a) TLNC limit (b) OLNC limit

Figure 9: Representative diagrams for the meson-baryon coupling.

coupling constants between baryons and mesons in the OLNC limit work analogously to the

parallel quantities in the TLNC limit with the standard substitution Nk
c → N2k

c required

for the consistency of the Skyrmion picture.

We begin with an examination of the baryon-meson vertex. First, consider typical

diagrams representing a baryon emitting a meson (figures 9(a), 9(b)) in the TLNC and

OLNC limits. The dot represents a current with the quantum numbers of some meson.

One can add to these “skeletons” various gluon insertions (and quark loops for the case of

the OLNC limit) without altering the basic Nc counting rules. The amplitudes for coupling

to a meson, as opposed to the current itself, will be controlled by the amplitude for the

creation of an extra meson, which as shown in Sec. 2 scales like N
−1/2
c and N−1

c in the

TLNC and OLNC limits respectively. Thus, one generically expects that the meson-baryon

coupling constant will scale as N
1/2
c (TLNC limit) or N1

c (OLNC limit). This is consistent

with the identification of a baryon as a soliton: the soliton-meson coupling generically

scales as 1/g. Thus, as is expected, the scaling matches provided g ∼ N
−1/2
c (TLNC limit)

or g ∼ N−1
c (OLNC limit).

Next consider meson-baryon scattering. First consider the TLNC limit. A character-

istic diagram contributing to the process (figure 10(a)) is the exchange of a quark between

the baryon and the meson; following this exchange there must be a gluon exchange to

keep the baryon and meson separately color singlets. In such a graph, there are two gluon

vertices (for a suppression of 1/Nc), and a combinatoric factor of Nc since Nc different

quarks in the baryon can participate in the exchange. As a result, typical diagrams for

baryon-meson scattering scale as (N
−1/2
c )2N1

c = N0
c . This result is consistent with meson-

soliton scattering with the standard identification since the meson-scattering amplitude is

independent of g at large g.

Now consider an analogous diagram in the OLNC limit (figure 10(b)). As before, the

interaction takes the form of a quark exchange. However, since the quarks now carry two

color indices, there must be at least two gluons exchanged in order to keep the baryon and

meson separately color singlets . As a result, there are four gluon vertices in a representative

diagram, contributing a total of (N
−1/2
c )4 = N−2

c , and a combinatorial factor of N2
c due

to the sum over the possible color labels for the quark in the baryon participating in the

interaction. The complete diagram thus scales as N0
c , just as before. Again this is consistent
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(a) TLNC limit, Feyn-
man diagram

(b) OLNC limit, Feyn-
man diagram

Figure 10: Representative diagrams contributing to meson-baryon scattering.

(a) TLNC limit, Feyn-
man diagram

(b) OLNC limit, Feyn-
man diagram

Figure 11: Representative diagrams for meson-baryon scattering with a two-meson final state.

with a soliton description.

Next consider a scattering process in which an incident meson on a baryon yields a final

state with two mesons. We first review the situation in the TLNC limit (figure 11(a)). An

incoming meson interacts with a baryon as in the meson-baryon case (by a quark exchange

plus a gluon interaction), and then decays into two outgoing mesons. The first part of

this interaction, involving the baryon, scales as N0
c as argued above. For the second part,

involving a meson decay, one may recall from above (in Sec. 2) that the amplitude for

such a process scales like N
−1/2
c . Thus the complete diagram scales as N

−1/2
c in the TLNC

limit. As before, this is consistent with a soliton description, in which such a process scales

with the generic meson coupling constant, g, as g1 ∼ N
−1/2
c in the TLNC limit.

For an analogous diagram for the OLNC limit, we claim that diagrams that show

scattering with an initial meson on a baryon yielding a two-meson final state scale as

N−1
c (figure 11(b)). As before, the baryon-meson interaction scales as (N

−1/2
c )4N2

c = N0
c .

Recalling the result for meson decays in the OLNC limit, we see that the meson decay part

of the diagram now scales as N−1
c . Thus the full diagram scales as N−1

c . Again, this is

consistent with a soliton description, since in the OLNC limit the generic meson coupling

constant g scales as N−1
c .

Finally we consider baryon-baryon scattering. As noted by Witten, the kinematics

of this situation are peculiar. Since the mass grows with Nc, the description of baryon-

baryon scattering at large Nc ultimately turns out to be smooth in the limit where the

mass and momentum go to infinity at large Nc, in such a manner that the velocity p/M
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(a) TLNC limit (b) OLNC limit

Figure 12: Representative baryon-baryon interaction diagrams.

remains fixed[2]. It should be noted that it is precisely in this limit that generic soliton

models have well-defined scattering amplitudes as g → 0. Secondly, the natural way to

describe the situation is through the overall strength of interactions during the process —

essentially the non-relativistic potential between the baryons [18, 19] which will ultimately

be seen to be strong — and not through the scattering amplitude. As noted by Witten,

if the energy of interaction is comparable to the incident kinetic energy, the two can play

off each other in a smooth way. Thus, the quark-line connected diagrams between baryons

should be interpreted in terms of the potential. The iteration of these between propagating

individual baryons gives the full amplitude.

In the TLNC limit, a representative diagram for this is figure 12(a). The two baryons

exchange a quark and also a gluon in order to stay as individual color singlets. There

are Nc choices for each of the two quarks to participate in the interaction, and two gluon

vertices, meaning the entire diagram scales as N2
c (N

−1/2
c )2 = N1

c . This means that the

baryon-baryon potential is of the same scale as the baryon mass and kinetic energy (with

fixed velocity).

The situation in the OLNC limit (figure 12(b)) is analogous, but because each quark

now carries two color labels, two gluons must be exchanged to keep the baryons color

singlets. The Nc scaling of such scattering diagrams is simply (N2
c )2(N

−1/2
c )4 = N2

c . Again,

we see that the baryon-baryon potential has the same scaling as the baryon kinetic energy.

Again, this result is fully consistent with soliton-soliton scattering, where the energy of

interaction between the solitons during the collision is of order 1/g2.

5. Conclusions

Using the results of [10] for the allowed representations for baryons in the OLNC limit, we

have shown that the baryon mass scales as N2
c ; this holds even when quark-quark inter-

actions through gluon exchange are taken into account. In doing so, we have resolved the

apparent paradox that a naive generalization of Witten’s counting for one-gluon exchange

appears to scale as N3
c . More generally, we have shown how to generalize Witten’s analysis

of baryon and meson behavior to the OLNC limit, and demonstrated that the replacement

rule Nk
c → N2k

c is justified for all of the representative diagrams.
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From this analysis, one can conclude that all of the arguments for identifying baryons

with solitons (such as the Skyrmion) in the ’t Hooft large Nc limit apply to baryons in the

orientifold large Nc limit. In general, to use the original Skyrme model to model baryons

in the orientifold large Nc limit, one must simply scale f2
π ∼ N2

c and ε2 ∼ N2
c from Eq.

(1.2), and also scale the WZW coefficient as n ∼ N2
c in accordance with the replacement

rule above. This will ensure that all of the generic hadronic scaling rules behave correctly.

We note, however, that the Skyrme model (i.e., Skyrme’s original model) is not justified

in large Nc limit. What is presumably justified is a Skyrme-type soliton model with an

arbitrary number of fields and arbitrarily complex interactions. The justification for such

a model based on generic scaling rules for QCD in the OLNC limit is essentially the same

as in the TLNC limit.

We should also note that of course the Skyrmion encodes more than just the generic

scaling rules, as it also encodes large Nc scaling rules associated with spin and flavor.

Relations between observables sensitive to spin and flavor in Skyrme-type modes but inde-

pendent of the dynamical details of the particular model were noted early on by Adkins and

Nappi [14]. Subsequently, it was noted first by Gervais and Sakita[20] and then developed

in considerable detail by Dashen and Manohar [21] and Dashen, Jenkins and Manohar

[22] that such relations stem from large Nc consistency conditions. Since the key to this

derivation is the fact that the pion-nucleon coupling constant grows with Nc while the

pion-nucleon scattering amplitude does not, one expects that all of these relations will go

through without essential change from the TLNC limit to the OLNC limit, again support-

ing the Skyrmion picture.

Although it is clear that a Skyrme-type model is capable of describing both limits (with

the parameters having a different scaling with Nc as one goes from one to the other), there

clearly are distinctions between baryons in the TLNC limit and the OLNC limit stemming

from the non-suppression of quark loops in the OLNC limit. How these distinctions may

be manifest in Skyrme-type models will be the subject of a future publication.
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